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Tanaka, (18) showed a way to relate the measure solution {Pt}t of a spatially
homogeneous Boltzmann equation of Maxwellian molecules without angular
cutoff to a Poisson-driven stochastic differential equation: {Pt} is the flow of
time marginals of the solution of this stochastic equation. In the present paper,
we extend this probabilistic interpretation to much more general spatially
homogeneous Boltzmann equations. Then we derive from this interpretation a
numerical method for the concerned Boltzmann equations, by using easily
simulable interacting particle systems.
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1. INTRODUCTION

The spatially homogeneous Boltzmann equation deals with the distribution
of the velocities Pt(dv) at the instant t, in a gas. In the case of Maxwell
molecules, Tanaka, (18) has built a process Vt, which can be seen as the
velocity of the "mean particle," of which the law is given by Pt(dv). This
representation of this particular Boltzmann equation has proved very
useful. Firstly, it did allow to extend the works of Graham, Méléard, (9, 14)

which were concerning numerical methods for Boltzmann equations with
cutoff, to the case of Boltzmann equations without cutoff, see Desvillettes,
Graham, Méléard, (3) and Fournier, Méléard. (6) Secondly, the use of recent
tools of stochastic analysis did allow to prove, via Tanaka’s representation,



the existence of very smooth and positive solutions to the Boltzmann
equation, see the works of Graham, Méléard, (10) Fournier. (5)

Our aim in this paper is to extend the probabilistic interpretation of
Tanaka to the case of non-Maxwell molecules. We thus consider a quite
general spatially homogeneous 2-dimensional Boltzmann equation without
angular cutoff. Then we state a nonlinear stochastic differential equation of
Poisson type, related to our Boltzmann equation.

We prove, by using the usual tools of convergence in law on the set of
càdlàg functions, the existence of a solution to this stochastic equation. As
a corollary, we obtain a new result of existence of weak solutions of
Boltzmann equations, in particular with very general initial data.

Using the above developed tools, we then build Monte Carlo approx-
imations. We prove a convergence result of the empirical law associated
with an interacting particle system to the solution of our Boltzmann equation.

We finally discuss about numerical results.
There is a very tiny literature about existence, uniqueness or regularity

of weak solutions for a Boltzmann equation without cutoff, for a non-
Maxwell gas, even in the spatially homogeneous case. Existence results can
be found in Goudon, (8) and Villani, (19) and a regularity result has been
obtained by Alexandre et al. (1) Let us also quote Proutière. (16)

Uniqueness is an open problem for the equation we consider. Since all
the convergence results we prove are obtained by compactness methods, we
obtain only existence of converging subsequences.

We study here the 2D case for technical (but rather serious) reasons.
From our probabilistic point of view, the study of the 3D Boltzmann
equations is much more difficult, because the collisions make appear dis-
continuous coefficients in the velocity variable. See ref. 6 for more details.
Let us finally remark that although the approach of Tanaka has allowed
many nice results in the spatially homogeneous case, the extension of this
approach to the full Boltzmann equation seems impossible. We however
hope to be able to deal one day with the case of the ‘‘mollified’’ inhomo-
geneous Boltzmann equation, in which the interactions are delocalized.

The paper is organized as follows: in the next section, we recall the
Bolzmann equation. In Section 3, we give our pathwise interpretation, and
solve the nonlinear Poisson driven stochastic differential equation. In
Section 4, we study particle systems. We describe the (very simple) simula-
tion algorithm in Section 5. Numerical results are given in Section 6.

Notations.

–– DT will denote the Skorohod space D([0, T], R2) of càdlàg func-
tions from [0, T] into R2. The space DT endowed with the Skorohod
topology is a Polish space.
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–– P(R2) is the set of probability measures on R2 and P2(R2) the
subset of probability measures with a second order moment. Similarly,
P(DT) will denote the space of probability measures on DT and P2(DT)
will be the subset of probability measures with a second order moment:
q ¥P2(DT) if >x ¥DT

supt ¥ [0, T] |x(t)|2 q(dx) <..
–– K will denote a real positive constant of which the value may

change from line to line.

2. THE EQUATION

The Boltzmann equation we consider describes the evolution of the
density f(t, v) of particles with velocity v ¥ R2 at time t in a rarefied
homogeneous 2-dimensional gas:

“f
“t

=Q(f, f), (2.1)

where Q is a quadratic collision kernel preserving momentum and kinetic
energy, of the form

Q(f, f)(t, v)=F
v
*
¥ R

2
F
p

h=−p
(f(t, vŒ) f(t, vŒg)−f(t, v) f(t, vg))

×B(|v−vg |, h) dh dvg

with

vŒ=v+A(h)(v−vg); vŒg=vg −A(h)(v−vg) (2.2)

and

A(h)=
1
2
1cos h−1

sin h
− sin h
cos h−1
2

Remark 2.1. For each h, j ¥ [−p, p]0{0},

|A(h)| [K |h| and |A(h)−A(j)| [K |h−j|. (2.3)

The cross-section B is a positive function. In the 3D situation, if the
molecules in the gas interact according to an inverse power law in 1/r s with
s \ 2, then B(z, h)=z

s−5
s−1d(|h|) where d ¥ L.loc(]0, p]) and d(h) ’K(s) h −s+1

s−1

when h goes to zero, for some K(s) > 0. Physically, this explosion comes
from the accumulation of grazing collisions.
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In this general (spatially homogeneous) setting, the Boltzmann equa-
tion is very difficult to study. A large literature deals with the non physical
equation with angular cutoff, namely under the assumption >p0 B(z, h) dh
<.. More recently, the case of Maxwell molecules, for which the cross
section B(z, h)=b(h) only depends on h, has been much studied without
the cutoff assumption. In the Maxwell context, Tanaka, (18) was considering
the case where >p0 hb(h) dh <., and Desvillettes, (2) Desvillettes, Graham,
Méléard, (3) and Fournier, (5) have worked under the general physical
assumption >p0 h2b(h) dh <+..

We will consider here cross sections of the following type, by analogy
of what happens in the 3D situation.

Hypothesis (R). The cross section can be written as

B(z, h)=k(z) b(h), with (2.4)

(1) b even from [−p, p]/{0}Q R+ and such that >p−p |h| b(h) dh
<.;

(2) k positive function and locally Lipschitz continuous and
k(z) [M, where M ¥ R+.

Notice that we are still far from the physical situations (that is, 3D cross
sections whose kinetic part explodes at 0 or at .).

We will see that our approach does not allow us to consider functions
b with just a second order moment. In a work in preparation we consider
another case for which b just integrates h2, but with more restrictive
assumption on z for the cross-section. Here, hypotheses on k are not very
stringent, except its boundedness. In particular, the strict positivity of k
outside 0 is not required.

Equation (2.1) has to be understood in a weak sense, i.e., f is a solu-
tion of the equation if for each test function f ¥ C1

b(R
2) (the set of C1 func-

tions on R2 whose derivative is bounded),

“

“t
Of, fP=OQ(f, f), fP

where O · , ·P denotes the duality bracket between L1 and L. functions.
A standard integration by parts shows that f satisfies for each f ¥ C1

b(R
2)

“

“t
F
R
2
f(t, v) f(v) dv= F

R
2×R

2
F
p

−p
(f(vŒ)−f(v))

×k(|v−vg |) b(h) dhf(t, v) dvf(t, vg) dvg (2.5)
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We have conservation of mass in (2.5), which leads to the following defini-
tion of solutions of (2.1).

Definition 2.2. Consider P0 a probability measure on R2. We
say that a probability measure flow (Pt)t is a measure-solution of the
Boltzmann equation (2.1) with initial data P0 if for each f ¥ C1

b(R
2)

Of, PtP=Of, P0P+F
t

0
OKfb(v, v*), Ps(dv) Ps(dv*)P ds, (2.6)

where Kfb is defined by

Kfb(v, v*)=F
p

−p
(f(v+A(h)(v−vg))−f(v)) k(|v−vg |) b(h) dh. (2.7)

The probabilitistic approach consists in considering (2.6) as the evolu-
tion equation of the flow of marginals of a Markov process. The law of this
process will be solution of the following nonlinear martingale problem.

Definition 2.3. Let B be a cross section satisfying Hypothesis (R)
and let P0 belong to P2(R2). We say that P ¥P2(DT) solves the nonlinear
martingale problem (MP) starting at P0 if for X the canonical process
under P, the law of X0 is P0 and for any f ¥ C1

b(R
2),

f(Xt)−f(X0)−F
t

0
OKfb(Xs, vg), Ps(dvg)P ds (2.8)

is a square-integrable martingale. Here, the nonlinearity appears through Ps

which denotes the marginal of P at time s.

Remark 2.4. Taking expectations in (2.8), we remark that if P is a
solution of (MP), then its marginal flow (Pt)t is a measure-solution of the
Boltzmann equation, in the sense of Definition 2.2.

Our first aim is to prove the existence of a solution to the martingale
problem (2.8) and then to obtain the existence of a measure-solution to the
Boltzmann equation. Our method gives no hope to obtain a uniqueness
result. We will also introduce a specific nonlinear stochastic differential
equation giving a pathwise version of the probabilistic interpretation. We
will study the existence of solutions of this equation, first in a weak sense
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under Hypothesis (R) and next in a strong sense under more stringent
assumptions.

Then we will use this pathwise probabilistic interpretation of the solu-
tions to show that these solutions can be obtained as limits of the laws of
stochastic interacting particle systems, and we will deduce a very simple
Monte-Carlo algorithm of simulation for the solutions.

3. A PATHWISE APPROACH

Let us now consider two probability spaces: the first one is the
abstract space (W,F, {Ft}t ¥ [0, T], P) and the second one is ([0, 1],
B([0, 1]), da). In order to avoid any confusion, the processes on
([0, 1], B([0, 1]), da) will be called a-processes, the expectation under da
will be denoted by Ea, and the laws La.

Notation 3.1. We will denote by L2
T the space of DT-valued pro-

cesses Y such that E(supt ¥ [0, T] |Yt |2) < +. and by L2
T−a the space of

a-processes W such that Ea(supt ¥ [0, T] |Wt |2) < +..

Definition 3.2. We will say that (V, W, N, V0) is a solution of
(SDE) if

(i) (Vt) is an adapted L2
T-process,

(ii) (Wt) is a L2
T−a-process,

(iii) N(w, dt, da, dz, dh) is a {Ft}-Poisson measure on [0, T]×[0, 1]
×[0, M]×[−p, p] with intensity m(dt, da, dz, dh)=dt da dz b(h) dh,

(iv) V0 is a square integrable variable independent of N,
(v) L(V)=La(W),
(vi)

Vt=V0+F
t

0
F
1

0
F
M

0
F
p

−p
A(h)(Vs− −Ws− (a)) 1{z [ k(|Vs− −Ws−(a)|)}N(ds, da, dz, dh)

(3.1)

This definition can be understood through the following remark.

Remark 3.3. If (V, W, N, V0) is a solution of (SDE), one easily
proves, by using the Itô formula, that L(V)=La(W) is a solution of (MP)
with initial law Q0=L(V0), and thus {L(Vs)}s ¥ [0, T] is a measure-solution
of the Boltzmann equation (2.6) with initial data Q0.
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We are now able to state some existence results, which are the main of
this section.

Theorem 3.4. Assume that Q0 is a probability measure on R2

admitting a moment of order 2, and that B(x, h)=k(x) b(h) is a cross-
section satisfying Hypothesis (R). Then (1) The nonlinear martingale
problem (MP) with initial data Q0 admits a solution Q ¥P2(DT). (2) Let Q
be any solution of (MP). Let W be any a-process such that La(W)=Q. On
an enlarged probability space from the canonical space (DT, DT, Q) there
exist a Poisson measure N with intensity m and an independent square
integrable variable V0 with law Q0 such that (X, W, N, V0) is solution of
(SDE), where X is the canonical process. (That means that there exists a
weak solution to (SDE)). (3) If one assumes moreover that:

Hypothesis (CL). The function k is locally Lipschitz continuous,
with a Lipschitz constant linearly increasing, i.e.,

|k(x)−k(y)| [K |x−y| (1+|x|+|y|),

then there exists a strong solution to the nonlinear stochastic differential
equation (SDE): for each probability space (W,F, {Ft}t ¥ [0, T], P), for each
Poisson measure N with intensity m and each square integrable variable V0

independent of N, there exist V, W such that (V, W, N, V0) is solution of
(SDE).

Remark 3.5. There is no assumption on Q0, except the existence of
a second order moment. This allows in particular to consider degenerate
initial data, as Dirac measures. The point (1) in Theorem 3.4 exhibits in
particular a measure-solution to the Boltzmann equation (2.1) for every
initial data Q0 ¥P2(R2). The point (2) in Theorem 3.4 gives a stochastic
‘‘pathwise’’ interpretation of the solution which might be helpful to study
this measure-solution. The point (3) in Theorem 3.4 might be useful in
situations where a ‘‘strong’’ existence is needed, as for examples coupling
techniques.

Before proving these results, let us mention that the obtained existence
result is not strong, at least from the Boltzmann equation point of view.
Indeed, Villani has proved in ref. 19 the existence of a function-solution f
to the 3D Boltzmann equation (and even in any dimension d \ 2), under
the conditions that: there exists c ¥ [−4, 1[, such that k(z)=|z|c, there
exists n > 0 such that b(h) ’ h −(1+n) when h goes to 0, the quantity
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> h2b(h) dh is finite, and the initial distribution Q0 has a density f0 satisfy-
ing a condition of finite energy and entropy.

A Sobolev regularity result of type f(t, v) ¥Hn/2
loc (R

3) for all t > 0 is
also proved in Alexandre et al. (1)

Our approach allows to consider more general initial conditions, but
our assumptions on k are much more stringent. The main interest of our
approach is to give a probabilistic interpretation to the equation, which
allows in particular to obtain a numerical approximation scheme.
Furthermore, a pathwise study of the process {Vt}t \ 0 would allow to
understand the ‘‘mean’’ behaviour of the particles in the gas. Finally, exis-
tence, smoothness, and positivity of function-solutions might be obtained
by applying Malliavin Calculus techniques to the stochastic process
{Vt}t \ 0. We are far, for the moment, from proving such results, because of
the indicator function that appears in (3.1). We however work in this
direction, and at least existence results should be obtained.

Let us now come back to our problem. We begin with some notation.
We denote by j the function from R2×R2×[0, M] into R2 defined as

j(v, w, z)=(v−w) 1{z [ k(|v−w|)}. (3.2)

Notice that the collision kernel Kfb defined in (2.7) can be written as

Kfb(v, v*)=F
p

−p
F
M

0
(f(v+A(h) j(v, vg, z))−f(v)) dz b(h) dh (3.3)

and that (3.1) can be written as

Vt=V0+F
t

0
F
1

0
F
M

0
F
p

−p
A(h) j(Vs− , Ws− (a), z) N(ds, da, dz, dh) (3.4)

We now give the proof of Theorem 3.4 which is obtained in many steps.
We first introduce, for n ¥N*, the functions jn from R2×R2×[0, M]

into R2 defined by

jn(v, w, z)=j(vNnK (−n), wNnK (−n), z) (3.5)

where vNn (resp. vK (−n)), denotes the vector (v1 Nn, v2 Nn) (resp.
(v1 K (−n), v2 K (−n)), if v=(v1, v2)). The functions j and jn satisfy the
following properties.
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Lemma 3.6. Under (R),

F
M

0
|j(v, w, z)| dz [M |v−w| ; F

M

0
|jn(v, w, z)| dz [M |v−w|

F
M

0
|j(v, w, z)−j(vŒ, wŒ, z)| dz [M(|v−vŒ|+|w−wŒ|)

+|v−w| (k(|v−w|)−k(|vŒ−wŒ|))

F
M

0
|jn(v, w, z)−jn(vŒ, wŒ, z)| dz [Kn(|v−vŒ|+|w−wŒ|)

with Kn a constant depending on n.

The proof of this lemma is easy and left to the reader.
Similarly to Definition 3.2, we consider the equation (SDE)n defined

by replacing j by jn:

Vn
t=V0+F

t

0
F
1

0
F
M

0
F
p

−p
A(h) jn(V

n
s− −Wn

s−(a)) N(ds, da, dz, dh)

with L(Vn)=La(Wn)

In the same way, we will denote by Kn, f
b the kernel defined as (3.3) with j

replaced by jn.

Proposition 3.7. Assume (R) and consider Q0 ¥P2(R2). For each
pair (V0, N), V0 being with law Q0 andN a Poisson measure with intensity m,
the equation (SDE)n admits a solution (Vn, Wn, N, V0) and

sup
n \ 1

E( sup
t ¥ [0, T]

|Vn
t |

2) < +.. (3.6)

Moreover, Qn=L(Vn)=La(Wn) is the unique solution of the nonlinear
martingale problem (MP)n wich is similar to (2.8) with Kfb(v, vg) replaced
by Kn, f

b (v, vg).

Proof. We fix n \ 1, V0 with law Q0 and independent of a Poisson
measure N with intensity measure m. Following Tanaka, (18) Desvillettes–
Graham–Meleard (3) or Fournier, (5) we construct a specific Picard iteration
which allows us to obtain the existence of a pair (Vn, Wn) such that
(Vn, Wn, N) is a solution of (SDE)n. We first consider the process X0
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identically equal to V0, then consider Y0 defined on [0, 1] such that
La(Y0)=L(X0). By induction, assuming that X0, X1,..., Xk and
Y0, Y1,..., Yk are constructed, one defines Xk+1 by

Xk+1
t =V0+F

t

0
F
1

0
F
M

0
F
p

−p
A(h) jn(X

k
s−, Y

k
s−(a), z) N(ds, da, dz, dh)

and one considers on [0, 1] a process Yk+1 such that

La(Y0, Y1,..., Yk+1)=L(X0, X1,..., Xk+1)

and so on. One proves easily thanks to Lemma 3.6 that for each fixed n,

E( sup
t ¥ [0, T]

|Xk+1
t −Xk

t |) [ F
t

0
F
1

0
F
M

0
F
p

−p
|A(h)| E(|jn(X

k
s−, Y

k
s−(a), z)

−jn(X
k−1
s− , Yk−1

s− (a), z)|) ds da dz b(h) dh

[Kn F
t

0
E(sup

u [ s
|Xk

u−Xk−1
u |) ds. (3.7)

We deduce easily that there exist an adapted process X with
E(supt ¥ [0, T] |Xt |) <. and a a-process Y with La(Y)=L(X) and
E(supt ¥ [0, T] |X

k
t −Xt |)=Ea(supt ¥ [0, T] |Y

k
t −Yt |) tends to zero as k tends

to infinity. Then (X, Y, N, V0) is solution of (SDE)n. Moreover, since
|A(h)| ¥ L1 5 L.(b(h) dh), and thanks to Lemma 3.6, one proves that since
L(V0)=Q0 admits a second order moment,

E(sup
t [ T

|Xt |2) < +..

Now, let us rename X=Vn and denote by Qn the law of Vn.
The proof of the uniqueness in law of a solution of (SDE)n is obtained

by a coupling argument, exactly as in ref. 3, Theorems 3.6-2 and 3.7. One
first proves that the law L(Vn)=La(Wn) of the solution of the nonlinear
stochastic differential equation (SDE)n obtained by the Picard iteration
does not depend on the possible choices for W, V0, N and next, one shows
that if (U, W, N̂, V0) is a solution of (SDE)n, then L(U)=L(Vn)=Qn,
where (Vn, Y, N̂, V0) is the Picard iteration constructed on the probability
space associated with V0 and N̂.

Now, to obtain the uniqueness of the solution of (MP)n, consider
another solution R of (MP)n. One shows, by using a comparison between
the Itô formula and the martingale problem, that the canonical process
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X is under R a pure jump process and that its Lévy measure is the
image measure of the measure m(ds, da, dz, dh)=ds da dz b(h) dh by the
mapping (h, a, z, s)W A(h) j(Xs− , Ws− (a), z), where the process Ws(a) is a
process chosen on the probability space [0, 1] with law R. Then, by using
the representation theorem proved in Grigelionis (11) and El Karoui–
Lepeltier (4) (see also ref. 17), we know that there exist on an enlarged
probability space a square integrable variable V0 and an independent point
Poisson measure N with intensity m such that (X, W, N, V0) is a solution of
(SDE)n. Then by the uniqueness proved above, R is equal to Qn and the
martingale problem (MP)n has a unique solution.

It remains to prove (3.6). Since >M0 |jn(v, w, z)| dz [K(|v|+|w|), with K
independent of n, since La(Wn)=L(Vn), we show that

E(sup
s [ t

|Vn
s|

2) [ E(|V0 |2)+K F
t

0
E(sup

u [ s
|Vn

u|
2) ds

where K does not depend on n, and Gronwall’s lemma allows to conclude.
L

Proposition 3.8. Under Hypothesis (R), still assuming that Q0 ¥

P2(R2), the sequence of probability measures (Qn)n on DT obtained in
Proposition 3.7 is tight for the weak convergence on P2(DT), and any limit
point Q of (Qn)n is solution of the nonlinear martingale problem (MP).

Proof. (1) We prove that the sequence Qn is tight for the weak
convergence on P2(DT). Thanks to (3.6), we just need to verify the Aldous
criterion (see, e.g., Jacod–Shiryaev, (12) p. 320). We have, for stopping times
y and yŒ with 0 [ y [ yŒ [ y+d,

E(|Vn
yŒ−Vn

y|) [ E1 F yŒ
y

F
1

0
F
M

0
F
p

−p
|A(h)| |jn(V

n
s−, W

n
s−(a), z)|b(h) dhdzdads2

[KE 1 F yŒ
y

F
1

0
(|Vn

s− |+|Wn
s−(a)|)) da ds2

1 since F |A(h)| b(h) dh <.2

[KE((yŒ− y) sup
t [ T

|Vn
t |)+KE(yŒ− y) Ea(sup

t [ T
|Wn

t |) [Kd

by (3.6), where K is independent of n. Then we deduce that for each g > 0,

sup
n

sup
{y, yŒ; 0 [ y [ yŒ [ y+d}

P(|Vn
yŒ−Vn

y| \ g)
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tends to 0 as d tends to 0, and the Aldous criterion is satisfied. Hence the
sequence (Qn) is tight.

(2) Let us now identify each limit point of (Qn). Let Q be a limit
value of this sequence. We consider the canonical process (Xt)t on DT and
for f ¥ C1

b(R
2), t > 0, we set

Hf
t=f(Xt)−f(X0)−F

t

0
F
M

0
F
p

−p
F
w ¥ R

2
(f(Xu+A(h) j(Xu, w, z))

−f(Xu)) Qu(dw) b(h) dh dz du

and Hn, f
t denotes a similar quantity with jn instead of j and Qn instead

of Q. The probability measure Q will be a solution of the nonlinear
martingale problem (MP) with initial law Q0 if it satisfies for each
0 [ s1 < · · · < sk < s < t [ T, each g1,..., gk ¥ Cb(R2),

O(Hf
t −Hf

s) g1(Xs1) · · · gk(Xsk), QP=0. (3.8)

Since Qn is solution of (MP)n, we already know that

O(Hn, f
t −Hn, f

s ) g1(Xs1) · · · gk(Xsk), Q
nP=0.

Since the sequence (Qn) satisfies the Aldous criterion, the law Q is the law
of a quasi-càg process (cf. ref. 12, p. 321). Then the mapping F: xW
(f(xt)−f(xs)) g1(xs1) · · · gk(xsk) is Q-a.e. continuous and bounded from DT

to R. Thus OF, QnP tends to OF, QP as n tends to infinity. Next, let us
prove that an defined by

71 F t

s
F
M

0
F
p

−p
F
R
2
(f(Xu+A(h) j(Xu, w, z))−f(Xu+A(h) jn(Xu, w, z)))

×dz Qn
u(dw) b(h) dh du2 g1(Xs1) · · · gk(Xsk), Q

n8

tends to 0 as n tends to infinity. We have:

|f(Xu+A(h) j(Xu, w, z))−f(Xu+A(h) jn(Xu, w, z))|

[ ||Nf||. |A(h)| F
M

0
|j(Xu, w, z)−jn(Xu, w, z)| dz

[K |h| (|w|+|Xu |)(1{|Xu| \ n}+1{|w| \ n}).
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Then

|an | [KPi=1,..., k ||gi ||.7F
t

s
F
R
2
(|w|+|Xu |)(1{|Xu| \ n}+1{|w| \ n}) Q

n
u(dw) du, Q

n8

[K F
x ¥DT

F
y ¥DT

(sup
t [ T

|x(t)|+sup
t [ T

|y(t)|)(1{supt [ T |xt| \ n}+1{supt [ T |yt| \ n})

×Qn(dx) Qn(dy)

[K 11 F
x ¥DT

(sup
t [ T

|x(t)|) Qn(dx)2×1 F
x ¥DT

(1{supt [ T |xt| \ n}) Qn(dx)2

+F
x ¥DT

(sup
t [ T

|x(t)|)(1{supt [ T |xt| \ n}) Qn(dx)2 .

By (3.6), we show that >x ¥DT
(supt [ T |x(t)|) Qn(dx) is bounded uniformly

in n, that >x ¥DT
(1{supt [ T |xt| \ n}) Qn(dx) tends to 0 as n tends to infinity, and by

Cauchy–Schwarz inequality that >x ¥DT
(supt [ T |x(t)|)(1{supt [ T |xt| \ n}) Qn(dx)

tends to 0 as n tends to infinity. Then an tends to 0 as n tends to infinity. It
remains to prove that OG(x, y), Qn(dx) é Qn(dy)P tends to OG(x, y),
Q(dx) é Q(dy)P, where

G(x, y)=1 F t

s
F
M

0
F
p

−p
(f(xu+A(h) j(xu, yu, z))−f(xu)) b(h) dh dz du2

×g1(xs1) · · · gk(xsk).

The measure Qn é Qn converges obviously to Q é Q. The function G is
Q é Q-a.e. continuous by a similar argument as before but not bounded.
Properties in Lemma 3.6 give that

|G(x, y)| [K(sup
t [ T

|x(t)|+sup
t [ T

|y(t)|).

Then, for each fixed real positive number C, the sequence OGNC,
Qn é QnP converges to OGNC, Q é QP. We remark that

|G(x, y)| 1{|G(x, y)| \ C}

[K(sup
t [ T

|x(t)|+sup
t [ T

|y(t)|) 1{supt [ T |x(t)|+supt [ T |y(t)| \ C/K}

[K(sup
t [ T

|x(t)|+sup
t [ T

|y(t)|)(1{supt [ T |x(t)| \ C/2K}+1{supt [ T |y(t)| \ C/2K}).
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We have already seen that

sup
n
O(sup

t [ T
|x(t)|+sup

t [ T
|y(t)|)(1{supt [ T |x(t)| \ C/2K}+1{supt [ T |y(t)| \ C/2K}), Qn é QnP

tends to 0 as C tends to infinity, thanks to (3.6). Now the conclusion is
obvious and the proposition is proved. L

Remark 3.9. Proposition 3.8 proves the first point of Theorem 3.4.

Let us now deduce the point (2) of Theorem 3.3.

Proposition 3.10. Assume (R) and Q0 ¥P2(R2). Let us consider the
canonical space DT, X the canonical process and Q the solution of (MP)
obtained in Proposition 3.8. Consider a a-process W such that La(W)=Q,
then there exist a Poisson measure N with intensity m on an enlarged
probability space and an independent square integrable variable V0 such
that (X, W, N, V0) is a solution of (SDE).

Proof. The proof is exactly similar to the end of that of Proposi-
tion 3.6. Since Q is solution of a martingale problem, the canonical process
X is a semimartingale under Q. Then a comparison between the Itô
formula and the martingale problem proves that X is a pure jump process
and that its Lévy measure is the image measure of the measure m on
[0, T]×[0, 1]×[0, M]×[−p, p] by the mapping (s, a, z, h)W A(h)×
j(Xs− , Ws− (a), z)=A(h)(Xs− −Ws− (a)) 1{z [ k(|Xs− −Ws−(a)|)}. Then always by
the representation theorem for point measures, see ref. 4, there exist on an
enlarged probability space a square integrable variable V0 and a point
Poisson measure N with intensity m such that (X, W, N, V0) is a solution of
(SDE). L

We are now interested in the pathwise study of the stochastic differen-
tial equation (SDE) under Hypothesis (CL). Before to study this nonlinear
SDE, let us introduce the associated linearized SDE.

Definition 3.11. (1) Let be given Z a L2
T−a-process, V0 a square

integrable variable and N a Poisson point measure with intensity m, inde-
pendent of V0 on a fixed probability space W. The classical SDE

Yt=V0+F
t

0
F
1

0
F
M

0
F
p

−p
A(h) j(Ys− , Zs− (a), z) N(ds, da, dz, dh)

is denoted by (SDE)Z.
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(2) Let X denote the canonical process on DT. Let us consider
R ¥P2(DT). Then (MP)R denotes the classical martingale problem: for all
f ¥ C1

b(R
2),

f(Xt)−f(X0)−F
t

0
OKfb(Xs, .), RsP ds

is a Q-martingale.

Remark 3.12. By using the Itô formula, one proves easily that if the
process Y is solution of (SDE)Z, then L(Y) is solution of (MP)L(Z).

Proposition 3.13. Let us assume Hypotheses (R) and (CL) and
Q0 ¥P2(R2) and let us consider a L2

T−a-process Z. Then the stochastic
differential equation (SDE)Z admits a unique solution Y in L2

T. Moreover,
L(Y) is the unique solution of (MP)L(Z).

Proof. We remark that the coefficients are locally Lipschitz contin-
uous in the Y-variable and with linear growth. Then the proof is relatively
standard. Indeed,

F
M

0
|j(v, w, z)−j(vŒ, w, z)| dz [ F

M

0
|(v−w)−(vŒ−w)| dz

+F
M

0
|v−w| 1{k(|v−w|) [ z [ k(|vŒ−w|)}dz

[K |v−vŒ| (1+|v|2+|vŒ|2+|w|2).

We fix n. Let us introduce j̄n(v, w, z)=j(vNnK (−n), w, z). We now
define the stochastic differential equation (SDE)nZ in a similar way than
(SDE)Z, but with j̄n instead of j. One can easily show that if Y1 and Y2

are two L2
T-processes, then

E 1 F t

0
F
1

0
F
M

0
F
p

−p
|A(h)| |j̄n(Y

1
s− , Zs− (a), z)− j̄n(Y

2
s− , Zs− (a), z)|

×N(ds, da, dz, dh)2

[KnE 1 F
t

0
F
1

0
|Y1

s −Y2
s| (1+|Zs− (a)|2) da ds2

[Kn F
t

0
E(|Y1

s −Y2
s|) ds.
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Then for each n, one proves in a standard way that there exists a unique
solution Yn to (SDE)nZ. One remarks moreover that there exists a constant
K such that for each n, >M0 |j̄n(v, w, z)| dz [K(|v|+|w|), from which one
deduces, using the fact that Ea(supt [ T |Zt |2) <., that

sup
n
E(sup

t [ T
|Yn

t |) <..

Let us now define the stopping time yn=inf{t > 0, |Yn
t | \ n}NT. It is clear

that the sequence yn converges to T almost surely, as n tends to infinity. By
the uniqueness argument for the solution of (SDE)nZ, one obtains

Yn
ynN t=Yn+1

ynN t ,

which allows us to define the process Y in such a way that YynN t=Yn
ynN t for

each n. That gives finally the existence and uniqueness for a solution of
(SDE)Z, and as corollary the existence and uniqueness for (MP)L(Z). L

We are now able to prove the last point (3) of Theorem 3.4. Let us
consider a solution Q of (MP), obtained in Proposition 3.8. Let us consider
on the probability space [0, 1] a a-process (W(a)) with law Q. Let now V
be the solution of (SDE)W. Then L(V) is solution of (MP)Q. But we just
have showed in the previous proposition that this martingale problem has a
unique solution. Since Q is already a solution of (MP)Q, we deduce that
L(V)=Q, which allows us to conclude that (V, W, N, V0) is a solution of
(SDE).

4. A STOCHASTIC PARTICLE APPROXIMATION

In this part, we will introduce some stochastic particle systems and will
prove a pathwise propagation of chaos, which will imply the convergence
of the empirical measures of the systems to a solution of (2.6). This will be
the theorical foundation of the Monte-Carlo algorithm given in the next
section.

To define a particle system, we first need to ‘‘cutoff ’’ the cross-section,
for any particle to have a finite number of collisions before T. Namely we
consider

Bl(z, h)=k(z) bl(h)

where

bl(h)=b(h) 1{|h| \ 1
l }
, (4.1)
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b and k satisfying the Hypothesis (R). For the moment, the real number
l > 0 is fixed, and we set ||bl ||1=>p−p bl(h) dh.

The natural interpretation of the nonlinearity in (2.6) leads to a simple
mean field interacting system but a physical interpretation of the equation
leads also naturally to a binary mean field interacting particle system. In
both cases, these n-particle systems are pure-jump Markov processes with
values in (R2)n and with generators defined for f ¥ Cb((R2)n) by

1
n

C
1 [ i, j [ n

F
p

−p
F
M

0
(f(vn+ei.A(h)(vi −vj) 1{z [ k(|vi−vj |)})−f(v

n)) dz bl(h) dh
(4.2)

for the simple mean-field interacting system and by

1
n

C
1 [ i, j [ n

F
p

−p
F
M

0

1
2
(f(vn+ei.A(h)(vi −vj) 1{z [ k(|vi−vj |)}

+ej.A(h)(vj −vi) 1{z [ k(|vi−vj |)})−f(v
n)) dz bl(h) dh (4.3)

for the binary mean-field interacting system. In these formulas, vn=
(v1,..., vn) denotes the generic point of (R2)n and ei: h ¥ R2 W ei.h=(0,...,
0, h, 0,..., 0) ¥ (R2)n with h at the ith place.

Both cases can be treated indifferently in a probabilistic point of view.
The first particle system can be related to the Nanbu algorithm (cf. ref. 15)
and is as simple as possible. The second one can be related to the Bird
algorithm (cf. ref. 20). Its main interest is that it conserves momentum and
kinetic energy. Moreover a set of numerical experiments shows it looks
faster and more precise. We thus consider from now on the binary mean-
field system. We denote by

V l, n=(V l, 1n,..., V l, nn)

the Markov process defined by (4.3).
We consider as in the previous section a pathwise representation of

such processes using Poisson point measures. More precisely, we introduce
a family of independent Poisson point measures (N l, ij)1 [ i < j [ n on
[0, T]×[0, M]×[−p, p] with intensities 1

2(n−1) b
l(h) dh dz dt. For i > j,

we set N l, ij=N l, ji. Now we consider the process (V l, in)1 [ i [ n solution of the
following stochastic differential equation:

V l, in
t =V i

0+C
n

j=1
F
t

0
F
M

0
F
p

−p
A(h)(V l, in

s− −V l, jn
s− )

×1{z [ k(|Vs−
l, in−Vs−

l, jn|)}N l, ij(dh, dz, ds). (4.4)
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We construct it easily by working recursively on each interjump interval of
the point process (N l, ij)1 [ i, j [ n. It is a n-dimensional Markov process with
generator the one described above. Let us denote

m l, n=
1
n

C
n

i=1
dVl, in

the empirical measure of this system and by (pn, l)n the sequence of laws
of m l, n, which are probability measures on P(D([0, T], R2)).

Theorem 4.1. Assume (R) and Q0 ¥P2(R2). Let (V i
0)i \ 1 be i.i.d.

Q0-distributed random variables. Then the sequence (pn, l)l, n is uniformly
tight for the weak convergence and any limit point charges only probability
measures which are solutions of (MP). Thus any limit point (for the con-
vergence in law) of the sequence (m l, n) is a solution of (MP).

Proof. To prove this theorem, we will show

(1) the tightness of (pn, l)n in P(P(D([0, T], R2))),

(2) the identification of the limiting values of (pn, l)l, n as solutions of
the nonlinear martingale problem (MP).

One knows (cf. ref. 14, Lemma 4.5) that the tightness of (pn, l)l, n is equiva-
lent to the tightness of the laws of the semimartingales V l, 1n belonging to
P(D([0, T], R2)). This tightness can be proved by showing the tightness of
the law of the supremum of |V l, 1n

t | on [0, T] and the the Aldous criterion
for V l, 1n.

One easily proves by a good use of Burkholder–Davis–Gundy and
Doob’s inequalities for (4.4) and thanks to (R) that

sup
l, n

E(sup
t [ T

|V l, 1n
t |2) < +.. (4.5)

from which we deduce without difficulty the tightness of the laws of V l, 1n

and hence the tightness of the sequence (p l, n).
Let us now prove that all the limit values are solutions of the non-

linear martingale problem (MP). Consider p. ¥P(P(D([0, T], R2))) a
limit value of (p l, n). It is the limit point of a subsequence we still denote
by (p l, n).

For f ¥ C1
b(R

2), 0 [ s1,..., sk [ s < t, g1,..., gk ¥ Cb(R2), Q ¥P(D([0,
T], R2)) and for X the canonical process on D([0, T], R2), we set
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F(Q)=7g1(Xs1) · · · gk(Xsk) 1f(Xt)−f(Xs)−F
t

s
F
M

0
F
p

−p
F
R
2

×1f(Xu+A(h) j(Xu, w, z))−f(Xu)2 Qu(dw) b(h) dhdz du2, Q8

=Og1(Xs1) · · · gk(Xsk)(H
f
t −Hf

s), QP (4.6)

with the notation used in the proof of Proposition (3.8).
Our aim is to prove that O|F|, p.P=0. The mapping F is not contin-

uous since the projections XWXt are not continuous for the Skorohod
topology. However, for any Q ¥P(D([0, T], R2)), XWXt is Q-almost
surely continuous for all t outside an at most countable set DQ, and then F
is continuous at the point Q if s, t, s1,..., sk are not in DQ. Here we use the
continuity and the boundedness of f, g1,..., gk and also the continuity
of (q, v)W >M0 >p−p >R2 (f(v+A(h) j(v, w, z))−f(v))q(dw) b(h) dh dz on
P(D([0, T], R2))×R2. Now one can show that the set D of all t for which
p.(Q, t ¥ DQ) > 0 is again at most countable. Thus, if s, t, s1,..., sk are in
Dc, F is p.-a.s. continuous. Then,

OF2, p.P=lim
l, n

OF2, p l, nP

But O|F|, p l, nP [ O|F l|, p l, nP+O|F−F l|, p l, nP where F l is defined as F with
b l instead of b. Firstly,

O(F l)2, p l, nP=E((F l(m l, n))2)

=E 11 1
n

C
n

i=1
(M l, if

t −M l, if
s ) g1(V

l, in
s1 ) · · · gk(V

l, in
sk )2

22

=
1
n
E(((M l, 1f

t −M l, 1f
s ) g1(V

l, 1n
s1 ) · · · gk(V

l, 1n
sk ))2)

+
n−1
n

E((M l, 1f
t −M l, 1f

s )(M l, 2f
t −M l, 2f

s )

×g1(V
l, 1n
s1 ) · · · gk(V

l, 1n
sk ) g1(V

l, 2n
s1 ) · · · gk(V

l, 2n
sk )) (4.7)

where M l, if is the martingale defined by

M l, if
t =f(V l, in

t )−f(V i
0)−

1
n

C
n

j=1
F
t

0
F
M

0
F
p

−p

×(f(V l, in
s +A(h) j(V l, in

s , V l, jn
s , z))−f(V l, in

s )) b l(h) dh dz ds
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and with Doob–Meyer process given by

OM l, ifPt=
1
n

C
n

j=1
F
t

0
F
M

0
F
p

−p

×(f(V l, in
s +A(h) j(V l, in

s , V l, jn
s , z))−f(V l, in

s ))2 b l(h) dh dz ds

and for i ] j,

OM l, if, M l, jfPt=
1
n
F
t

0
F
M

0
F
p

−p
(f(V l, in

s +A(h) j(V l, in
s , V l, jn

s , z))−f(V l, in
s ))

×(f(V l, jn
s +A(h) j(V l, jn

s , V l, in
s , z))−f(V l, jn

s )) b l(h) dh dz ds.

The right terms in (4.7) go to 0 thanks to the expression of the Doob–
Meyer process, to the uniform integrability proved in (4.5) and thanks to
hypothesis (R). Moreover the convergence is uniform in l. Hence

lim
n

O|F l |, p l, nP=0, uniformly in l.

Otherwise,

O|F−F l |, p l, nP=E(|F−F l| (m l, n))

=E 1 :7 F t

s
F
M

0
F
p

−p
F
R
2
(f(Xu+A(h) j(Xu, w, z))−f(Xu))

×m l, n
u (dw)(b(h)−b l(h)) dh dz du, m l, n8:2

[Kl sup
l, n

E(sup
t [ T

O|v|, m l, n
t P) [Kl sup

l, n
(E(sup

t [ T
O|v|2, m l, n

t P))
1
2

The second term is finite by (4.5) and Kl=C te >p−p |h| |b(h)−b l(h)| dh
tends to 0 as l tends to infinity.

We have then proved that

O|F|, p.P=0.

Thus, F(Q) is p.-a.s. equal to 0, for every s, t, s1,..., sk outside of the
countable set DQ. It is sufficient to assure that p.-a.s., Q is solution of the
nonlinear martingale problem (MP). L
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Corollary 4.2. Assume (R) and Q0 ¥P2(R2) and consider a
sequence m lr, nr which converges to Q. Then the probability measure-valued
process (m lr, nr

t )t \ 0 converges in probability to the flow (Qt)t \ 0 in the space
D([0, T], P(R2)) endowed with the uniform topology.

Proof. The flow (Qt)t \ 0 is deterministic and continuous. Then the
convergence to (Qt)t \ 0 is the same for the Skorohod or for the uniform
topology. We use an intermediary lemma, proved in Méléard, (14) Lemma
4.8 (see also Léonard (13)).

Lemma 4.3. Let (mn)n be a sequence of random probability mea-
sures on DT which converges in law to a deterministic probability measure
Q in P2(DT). Let us assume moreover that

lim
rQ 0

sup
0 [ t [ T

EQ( sup
t−r < s < t+r

|DXs |N1)=0 (4.8)

where X is the canonical process on DT, then the flow (mn
t)t \ 0 converges in

probability to (Qt)t \ 0 in D([0, T], P(R2)) endowed with the uniform
topology.

This result is not obvious since in DT the projections are not contin-
uous for the Skorohod topology.

Let us verify (4.8) in our context. We know by the point (ii) of
Theorem 3.3 that X can be obtained on an enlarged probability space as
solution of (3.1). Then

EQ( sup
t−r < s < t+r

|DXs |N1)

[ EQ
1 C

s ¥ [t−r, t+r]
|DXs |N12

[ F
t+r

t−r
F
1

0
F
M

0
F
p

−p
|A(h)| |j(Xs− , Ws− (a), z)| b(h) dh dz da ds

[K F
t+r

t−r
F
1

0
EQ((|Xs− −Ws− (a)|) da ds

[KrEQ(sup
t [ t

|Xt |).

But this last quantity tends to 0 as r tends to 0 since EQ(supt [ T |Xt |) is
finite. Indeed, since Q ¥P2(DT), the canonical process X is a L2

T-process
under Q. We have the result. L

We will now explicit the algorithm of simulation.
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5. THE MONTE-CARLO ALGORITHM

We deduce from the above study an algorithm associated with the
binary mean-field interacting particle system (Bird’s approach). We could
do the same thing with the simple mean-field interacting particle system
(Nanbu’s approach), but the numerical results seem less efficient.

From now on, the functions k and b defining the cross-section B, the
initial distribution Q0, the terminal time T > 0, the size n \ 2 of the particle
system and the cutoff parameter l > 0 are fixed. We denote by
Bl(z, h)=k(z) bl(h) the corresponding cross-section with cutoff. Because
of Theorem 4.1, we simulate a particle system following (4.3), i.e., the
whole path (Vn

t)t ¥ [0, T] ¥D([0, T], (R2)n).
First of all, we assume that Vn

0 is simulated according to the initial
distribution Q é n

0 . Then, we denote by 0 < T1 < · · · < Tk the successive jump
times until T of a standard Poisson process with parameter nM ||bl ||1

2 . For
example, one simulates independent exponential laws with this rate which
describe the inter-collision time-intervals.

Before the first collision, the velocities do not change, so that we
set Vn

s=Vn
0 for all s < T1. Let us describe the first collision. We choose

at random a couple (i, j) of particles according a uniform law over
{(l, m) ¥ {1,..., n}2; m ] l},. We choose z uniformly on the interval [0, M],
and we finally choose the collision angle following the law bl (h)

||bl ||1
dh. Then we

set

Vn, i
T1
=Vn, i

0 +A(h)(Vn, i
0 −Vn, j

0 ) 1{z [ k(|V0
n, i−V0

n, j|)}

Vn, j
T1
=Vn, j

0 +A(h)(Vn, j
0 −Vn, i

0 ) 1{z [ k(|V0
n, i−V0

n, j|)}

Vn, l
T1
=Vn, l

0 if l ] {i, j}

Since nothing happens between T1 and T2, we set Vn
s=Vn

T1
for all

s ¥ [T1, T2[.
Iterating this method, we simulate Vn

T1
, Vn

T2
,..., Vn

Tk
, i.e., the whole path

(Vn
t)t ¥ [0, T], which was our aim.
Notice that this algorithm is very simple and takes a few lines of

program and does not require to discretize time. It furthermore conserves
momentum and kinetic energy.

6. NUMERICAL STUDY

We now would like to have an idea about the true speeds of con-
vergence of the previous algorithm in physical situations. In such a situa-
tion, the function k does not satisfy assumption (R), since it is not
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bounded. We thus will have to replace k by an approximating bounded
function kM. Another problem occurs: we do not know if the uniqueness
holds for our Boltzmann equation.

Of course, numerical results will not allow to conclude anything, but
we will see that in the following study, neither the uniqueness nor the
boundeness of k will be a problem.

Let us now be precise. We consider the following initial distribution of
the velocities:

P0(dv)=1[−1/2, 1/2]2(v) dv

and the physical cross section corresponding to interactions in 1/r4:

B(z, h)=k(z) b(h)=z −1/3h −5/3

For M> 0 and l > 0, we set

kM(z)=k(z)NM and bl(h)=b(h) 1|h| \ 1/l

Notice that BM=kMb satisfies assumption (R) and that BM, l=kMbl is its
corresponding cross section with cutoff.

For each M, l, we denote by {QM, l} the solution of the martingale
problem with the cross section BM, l, obtained by Theorem 4.1. We know
that for each M, each l, {QM, l} is the limit, as n tends to infinity, of the
empirical measures mM, l, n associated with the simulable empirical particle
systems. We also know that for each fixed M, {QM, l}l is tight, and that
any limit point QM is solution of the martingale problem with the cross
section BM.

In order to study these many convergences, we have to consider a
fixed quantity. The first idea is to study the moments of the solution of the
Boltzmann equation. But in some situations, we are able to prove the
uniqueness of the moments of the solutions of the Boltzmann equation,
although the uniqueness of solutions stays an open problem. We thus
consider the following quantities, for t0=1:

mM(t0)= F
R
2
|v|4 e −|v|2QM

t0 (dv); mM, l(t0)= F
R
2
|v|4 e −|v|2QM, l

t0 (dv)

and mM, l, n(t0)= F
R
2
|v|4 e −|v|2mM, l, n

t0 (dv)

First of all, we study the possible convergence of mM, l(t0), as M and l go to
infinity. We compute numerically this quantity, by using Corollary 4.2: we
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Fig. 1. ‘‘True value’’ of mM, 10 as a function of ln(1+M).

Fig. 2. ‘‘True value’’ of m10, l as a function of ln(1+l).
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are allowed to say that mM, l % OmM, l, 5000P, where O ·P denotes an ‘‘empiri-
cal’’ mean over many experiences.

We obtain Figs. 1 and 2, which seem to show that mM, l converges,
very fastly, to some quantity, which we denote by m(t0), which equals
0, 02752, and which we hope to be equal to >R2 |v|4 e −|v|2Qt0(dv), where Q is
a (possibly unique) solution of the martingale problem with the physical
cross section B.

Let us mention that in the Maxwellian case, i.e., when k — 1, we are
able to prove that the rate of convergence of Q l to Q is (at the worse) pro-
portional to >1/l0 h

2b(h) dh. Numerical experiments (see ref. 6) confirm this
speed of convergence. Here, we thus would expect a speed of convergence
of mM, l(t0) to mM(t0) in >1/l0 h

2b(h) dh % 1/l4/3, at least for M fixed. We
obtain the following values of the error e(l, M), in percent, of mM, l(t0) with
respect to mM(t0):

l 1 2 4 8

e(l, 10) 4.94 1.63 0.51 0.08

e(l, 10)× l4/3 4.94 4.10 3.23 1.28

(We do not consider large values of l, because for l large, the error due to
the computations become larger than that due to the cutoff). We thus see
that the speed of convergence might hold (here it seems to be faster, but
this must be related to our choice of the functional |v|4 e −|v|2 ).

We now would like to study the ‘‘mean’’ speed of convergence of
mM, l, n(t0) to mM, l(t0), as n goes to infinity. We thus denote by eM, l, n the
mean error, in percent, of mM, l, n(t0) (obtained by one simulation), with
respect to mM, l(t0). In other words, for O ·P the mean over several
experiences,

eM, l, n(t0)=7100× :
mM, l, n(t0)−mM, l(t0)

mM, l(t0)
:8

Considering thatm10, 10(t0)=m100, 100(t0)=m(t0)=0.02752, we obtain Fig. 3.
It thus seems that the mean error is in K/`n , with the constant K

not depending too much on M and l, at least for M and l sufficiently large.
We have proved, in the Maxwellian case, see ref. 7, a fluctuation

Theorem for each l fixed, which still seems to hold here, see Fig. 3. But
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Fig. 3. Mean error of one simulation as a function of ln(1+n).

once again, the fact that the constant K/`n does not depend on M and l
seems to be related to our choice for the quantity m(t0).
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